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1. INTRODUCTION: 
 
Radiation therapy (RT) is a key therapeutic option for prostate cancer, either alone or in combination with 
hormone therapy. However, the radiation dose that can be safely administered is often lower than the dose 
considered to be optimal to eradicate tumor cells in the vicinity of the primary lesion, for example pelvic lymph 
nodes. This is due, in large part, to ‘collateral damage’ by radiation, i.e. toxicity to the intestine and the bladder. 
Treatment strategies to escalate the dose of radiation to the pelvic sentinel lymph nodes and/or the primary 
site, are limited by normal tissue dose constraints that can't be surmounted by IMRT or particle therapy. Hence 
protection of normal tissue will be a critical requirement for future dose escalation trials in patients with locally 
advanced disease. Existing radiation protectors including amifostine (1), sucralfate (2) and mesalazine (3) are 
of limited utility in selectively protecting the small and large intestines against radiation effects. This motivated 
us to explore the potential of a novel class of pharmacological ‘radiation protectors’ to reduce normal tissue 
toxicity associated with radiation therapy. In preliminary work we and others had identified several ‘targeted 
agents’, i.e. small molecule compounds which radioprotect multiple normal tissues including the epithelial lining 
of the intestinal tract against deleterious effects of high dose radiation. These included pharmacological 
inhibitors of NF-κB activity and inhibitors of glycogen synthase kinase(GSK)3 that mimic select pro-survival 
effects of the PI-3-kinase/AKT pathway (Table 1). Of note, the agents under investigation are modulators of 
signal transduction pathways and, thus, distinct from conventional ROS scavengers or antioxidants such as 
Amifostine. This is notwithstanding the fact that some of the inhibitors tested (e.g. ethyl pyruvate, CDDO) also 
exert antioxidant activity. 

 

2. KEYWORDS: 
Radiation therapy, symptom management, signal transduction, drug development 

 

3. OVERALL PROJECT SUMMARY: 
The compounds originally proposed for testing in the radiation protection setting are listed in Table 1.  In the 
previous progress report we summarized data in support of the conclusions that (i) the synthetic oleanane 
triterpenoid RTA 408 is an effective radiation protector of normal tissues including the skin and the epithelial 
lining of the gastrointestinal system, (ii) among all of the compounds tested RTA 408 and EP are most effective 
when compared to the GSK inhibitors tested. (iii) radiation protection by RTA 408 is selective to normal tissues 
as growth of human prostate cancer xenotransplants is inhibited by RTA 408 either alone or in combination 
with ionizing radiation.  These results have since been submitted for publication and are in press in Molecular 
Cancer Therapeutics (see Appendix).  These results further encouraged us to focus during the last funding 
period on mechanisms of radiation protection provided by RTA 408.  Of note these studies represent a logical  
extension of the original proposal but go far beyond the orginial goals and milestones.  

Table 1:  Compounds under investigation. The compounds indicated below were selected due to their 
radioprotective properties in zebrafish screens and in mice. All compounds used in zebrafish except 
RTA/CDDO were from Calbiochem/EMD. RTA 408 and other CDDO derivatives were provided by REATA 
Pharmaceuticals. Note that, in our previous progress report RTA 408 was referred to as TX425.   Protection 
was achieved in zebrafish and mice at roughly equimolar concentrations where data are available in both 
model systems.  Radioprotection of the GI system in zebrafish was selectively tested and observed for EP and 
CDDO as well as for LiCl, SB216763 and Azakenpaullone. Data were compiled from the following references 
(4-6). Zebrafish GSK3 inhibitor data from our laboratory are unpublished.  

Pathway Compound Target(s) Effective dose  
(in vitro) 

NF-κB Ethyl Pyruvate (EP) NF-κBp65 1 mM 
RTA 408 (CDDO) IKKβ/KEAP1-Nrf2 1 μM 

GSK3 
Lithium Chloride (LiCl) GS3 (allosteric) 20 mM 
SB216763 GSK3 (ATP competitive) 5 μM 
Azakenpaullone GSK3 (ATP competitive) 0.3 μM 
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1. Thiol modifying compounds of different chemical composition act as radiation protectors. 
 

RTA 408 is a thiol-modifying compound (TMC) which is covalently interacts with free cysteines on the surface 
of proteins (7).   While it effectively inhibits canonical activation of the NF-kB pathway (8) it also targets multiple 
other signaling intermediates and effectors (9-12).  Previous work by us and others revealed that another thiol 
modifying agent, ethyl pyruvate (EP) also is an effective radiation protector (4, 5) and these results were 
confirmed by us (13).  

Recently, yet another thiol-modifying compound (diaminoparthenolide (DMAPT)) was found to selectively 
radioprotect normal tissues while inhibiting tumor growth (14).  Based on this recent report we directly 
compared radiation protection of mice by RTA 408 and DMAPT.  This experiment revealed equipotent 
protection of mice against lethal gastrointestinal syndrome induced by 9 Gy total body radiation and the results 
achieved with either compounds are comparable with results obtained using the FDA-approved radiation 
protector amifostine (Fig. 1).  In aggregate, these results support the hypothesis, that thiol-modifying agents of 
different chemical composition share a target spectrum that, in aggregate, underlies selective radiation 
protection of normal tissues.  They provide the opportunity to identify shared targets relevant to either radiation 
protection of normal tissues or to anti-tumor effects of these agents.   
 
Figure 1:  Radioprotective effects of RTA 408 and DMAPT.  (A) C57Bl/6 mice (n=5 per cohort) were 
administered RTA 408 (17.5 mg/kg i.p.) or DMAPT (at the concentrations indicated) or  vehicle (DMSO) control 
1 day and 1 hour prior to radiation exposure (8 Gy) followed by 3 daily doses post IR.  Animals were 
euthanized at the end of the observation period, when weight loss reached or exceeded 20% of the initial 
weight, or if they showed signs of severe morbidity. (B)  Radiation protection provided by RTA 408 as 
compared to Amifostine.  Amifostine was administered once 1 h prior to radiation. RTA 408 was admininstered 
as described in the legend to panel (A).  
A       B 

 
 
 
   
2. Effects of RTA 408 on normal and malignant cells in vitro. 

 
Next, we determined whether we could recapitulate selective normal tissue protection by RTA 408 or DMAPT 
in human cells grown in vitro.  This was done to establish an experimental platform for molecular target 
identification and validation as they relate to radiation protection.  To this end, we determined the dose-
dependent effects of either compound on survival and proliferation of primary normal epithelial cells (prostate 
cells and keratinocytes) as compared to prostate cancer cell lines.  The prostate cancer cell lines tested were 
PC3, DU145, LNCaP-/C4-2B and CWR22Rv1 all of which are inhibited by RTA 408 when grown as xenografts 
in mice (13).  Cell growth and survival were determined using both crystal violet staining of attached cells and 
WST assays measuring metabolic activity of cells.  These assays were performed at least three times and an 
example for typical results using RTA 408 is shown in Fig. 2. Surprisingly, these assays revealed that, in 
contrast to our in vivo findings, the effects of RTA 408 and of DMAPT on normal and tumor cells grown in vitro 
were indistinguishable.  In fact, both compounds inhibited survival and proliferation of normal and malignant 
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cells alike.  Of note, this result is different from results published on DMAPT which reportedly selectively 
inhibits prostate cancer cells in vivo and vitro (14).   

More importantly, these results indicate that the cytoprotective effects of RTA 408 and, most likely DMAPT, are 
not cell-autonomous but require the in vivo context and the interplay of different cell types provided only in vivo. 
  
 Figure 2:  In vitro RTA 408 inhibtis survival and growth of normal and transformed cells equally.  
  

 

3. Radiation protection of the myeloid cell compartment by RTA 408 

In a separate set of experiments we characterized cytoprotective effects of RTA 408 on the hematopoietic 
system. This was motivated by the observation that RTA 408-treated mice that survived radiation-induced 
gastrintestinal syndrome invariably continued to survive for more that 30 days indicative of survival of the 
hematopoietic syndrome as well.   
In colaboration with Dr. William H. Fleming (Oregon Stem Cell Center; OSHU) we detemined that RTA 408 
increased survival of hematopoietic raidation syndroma associated with complete rescue of functionally 
competent hematopoietic stem cells.   Specifically, the administration of a brief course of RTA 408 treatment 
beginning 24 h after bone marrow lethal doses of radiation significantly increased overall survival. Importantly, 
treatment with RTA 408 led to the full recovery of steady state hematopoiesis with normalization of the 
frequency of hematopoietic stem and progenitor cells.  Moreover, hematopoietic stem cells from RTA 408-
mitigated mice showed lineage-balanced, long-term, multilineage potential as determined by serial bone 
marrow transplantation, indicative of their normal self-renewal activity.  The potency of RTA 408 in mitigating 
radiation-induced bone marrow suppression makes it an attractive candidate for potential clinical use in 
treating both therapy-related and unanticipated radiation exposure.  The results of this study have been 
submitted for publication and are currently under review (15).   
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4.  RTA 408-dependent myeloid cell recruitment is required for survival and recovery from 
radiation-induced gastrointestinal syndrome. 
Based on the results described in the preceding paragraph we asked whether bone marrow-derived cells 
contributed, in a non-cell autonomous fashion, to the rescue of GI syndrome.  First, we established that 
treatment with RTA 408 leads to a dramatic influx of CD11b+ myeloid cells into the irradiated lamina propria of 
the intestines (Fig. 3).  This cell population is functionally relevant as a previous study showed that CD11b+ 
cells provide radiation protection of the murine GI system in the bone marrow transplantation setting (16).  In 
addition and more importantly, depletion of these cells by treatment of mice with an antibody blocking CD11b 
(M1/70 (17)) completely abrogated radiation protection of mice by RTA 408 (Fig. 4).  Collectively, these results 
support the hypothesis that RTA 408 effects radiation protection of normal epithelial tissues by rescuing, 
recruiting and/or reprogramming myeloid cells with cytoprotective properties.  Characterizing this mechanism 
further is at the center of our research effort going into the third year of funding through this award.  
 
Figure 3: RTA 408 recruits CD11b+ myeloid cells into the irradiated GI tract.  (A)  Increased abundance of 
CD11b+ cells in irradiated (9 Gy) intestines of mice treated with RTA 408.  (B)  Flow cytometric analysis of 
CD11b+ cells in irradiated (9 Gy) intestines of mice treated with RTA 408.  Representative results from one 
mouse are shown.  Note increased number of CD11bhi/CD11cmed immunocytes in the irradiated mouse 
receiving RTA 408. 
 

 
 
 
Figure 4: Recruitment of CD11b+ myeloid cells into the irradiated GI tract is required for radiation 
portection by RTA 408.  Prior to irradiation and drug treamtent mice were pretreated with the CD11b blocking 
antibody M1/70.  Blocking recruitment of CD11b+ cells abrogated radiation protection by RTA 408.  
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4. KEY RESEARCH ACCOMPLISHMENTS: 
 

• Identified RTA 408 as a lead compound to be further characterized and developed as a selective 
radiation protector. 

• Established a novel mechanism of action of RTA 408 (and potentially other radioprotective thiol-
modifying compounds) related to rescue, recruitment and reprogramming myeloid cells to sites of tissue 
injury. 

 
5. CONCLUSION: 
 
We have established that the thiol-modifying compound RTA 408 is a robust radiation protector of multiple cell 
types and organ systems (hematopoietic, skin and gastrointestinal) in mice. Preliminary results point to 
a previously unrecognized mechanism of action of radiation protectors that depends on reprograming myeloid 
cells.  Identification of relevant molecular targets of RTA 408 and related compounds in these myeloid cells is 
imperative as a corollary to further drug development.  This investigation will be continued during the next 
funding period. Of note, during the last funding period, REATA Pharmaceuticals has begun a clinical trial 
(NCT02142959) to explore utility of a topical formulation of RTA 408 as a protector against radiation dermatitis.  
In summary, the work performed under this award during the last 2 years has provided unique insights into 
radiation protection mechanisms amenable to pharmacological intervention and has contributed to the initiation 
of a clinical trial of RTA 408 as a radioprotector.  
 
6. PUBLICATIONS, ABSTRACTS, AND PRESENTATIONS:    
 

• Invited oral presentation at the 20th Annual Prostate Cancer Foundation Retreat in October 2013. 
• Invited oral presentation at the NIH-NIAID “Centers for Medical Countermeasures Against Radiation” 

Workshop, Baltimore October 2014. 
• Invited to submit a full project as part of the competing renewal application for the Center of 

Countermeasures against Radiation; NIH/NIAID) at Einstein Medical Center, Bronx, NY (PI: Dr. C. 
Guha). 

• Published one manuscript describing selective radiation protection of gastrointestinal epithelium by a 
compound (RTA 408) that has anti-tumor properties (Alexxeev et al.). 
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• Submitted a second manuscript on RTA 408-dependent protection of hematopoietic cells against 
radiation damage (Goldman et al.).  

• A third manuscript on effects of RTA 408 on myeloid cell phenotypes is in preparation. 
 
 
7. INVENTIONS, PATENTS AND LICENSES: 
N/A 
 
8. REPORTABLE OUTCOMES: 
 
This award has led to unique insights into the mechanism of action by which certain thiol modifying agents with 
anti-tumor properties provide selective radiation protection to normal tissues.   Of note, the lead compound 
identified in the conduct of our work has already enteered clinical trials not only as an anti-tumor agent but also 
as a protector against radiation damage to the skin of cancer patients undergoing radiation therapy.    
 
9. OTHER ACHIEVEMENTS: 
 
Results obtained through this award have contirbuted to submission of two grant applications to the NIH.  One 
application is an RO1 application to further elucidate how RTA 408 and related compounds affect myeloid cell 
physiology and phenotype.  The second application is a project incorporated into the resubmission to 
NIH/NIAID of a U19 grant to continue funding of a “Center for Medical Countermeasures against Radiation” 
(PI: Chandan Guha).  
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1 Small Molecule Therapeutics

Q12 RadiationProtectionof theGastrointestinal Tract andGrowth
3 Inhibition of Prostate Cancer Xenografts by a Single
4 Compound
5
6 Vitali Alexeev1, Elizabeth Lash1, April Aguillard1, Laura Corsini1, Avi Bitterman1, Keith Ward2, Adam P. Dicker3,
7 Alban Linnenbach1, and Ulrich Rodeck1,3

8 Abstract
9 Normal tissue toxicityQ3 markedly reduces the therapeutic index of genotoxic anticancer agents, including

10 ionizing radiation.Countermeasures against tissuedamage causedby radiation are limitedby their potential to

11 also protect malignant cells and tissues. Here, we tested a panel of signal transduction modifiers for selective

12 radioprotection of normal but not tumor tissues. These included three inhibitors of GSK3 (LiCl, SB216763, and

13 SB415286) and two inhibitors of NF-kB (ethyl pyruvate and RTA 408). Among these, the thiol-reactive

14 triterpenoid RTA 408 emerged as a robust and effective protector of multiple organ systems (gastrointestinal,

15 skin, and hemopoietic) against lethal doses of radiation. RTA 408 preserved survival and proliferation of crypt

16 cells in lethally irradiated small intestines while reducing apoptosis incidence in crypts and villi. In contrast,

17 RTA 408 uniformly inhibited growth of established CWR-22Rv1, LNCaP/C4-2B, PC3, and DU145 xenografts

18 either alone or combinedwith radiation. Anti-tumor effects in vivowere associatedwith reduced proliferation

19 and intratumoral apoptosis and with inhibition of NF-kB–dependent transcription in PC3 cells. Selective

20 protection of normal tissue compartments by RTA 408 critically depended on tissue context and could not be

21 replicated in vitro. Collectively, these data highlight the potential of RTA 408 as a cytoprotective agent thatmay

22 be safely used in chemoradiation approaches. Mol Cancer Ther; 1–10. �2014 AACR.

23
24
25

26 Introduction
27 Radiotherapy is the most commonQ4 therapeutic modal-
28 ity across a wide range of malignant diseases, including
29 prostate cancer. However, the delivery of curative radi-
30 ation doses is hampered by acute or chronic "collateral
31 damage" affecting normal tissues. When treating tumors
32 in the abdominal cavity, toxicity to the intestine and the
33 bladder are often dose limiting (1). Highly targeted meth-
34 ods to deliver radiation specifically to disease sites alle-
35 viate radiation toxicity, yet 40% to 50% of patients with
36 locally advanced prostate cancers recur locally following
37 treatment (2). Hence, protection of normal tissue will be a
38 critical element of future dose-escalation trials in patients
39 with locally advanced prostate cancer. Existing radiation
40 protectors, including amifostine (3), are of limited utility
41 in protecting the small and large intestines against radi-
42 ation effects.

44Inflammation is a key element of the radiation response
45of normal and tumor tissues and is commonly associated
46with increased activity of NF-kB (4, 5). Previously, we
47demonstrated that several inhibitors of canonical NF-kB
48activation improved survival of lethally irradiated zebra-
49fish embryos and preserved gastrointestinal morphology
50and function (6). Inhibitors of glycogen synthase kinase
51(GSK)3 similarly protect normal tissues, including the gas-
52trointestinal tract (7, 8).While the role ofGSK3b in cell stress
53responses is complex (for review, see ref. 9), it has been
54implicated inmodifyingNF-kB–dependent transcriptionof
55genes encoding proinflammatory proteins (10, 11).
56Here, we performed a side-by-side comparison of
57radioprotective properties of five compounds targeting
58either GSK3 and/or NF-kB with a focus on the gastroin-
59testinal tract. We report that the triterpenoid RTA 408
60provides robust radiation protection to the gastrointesti-
61nal system of mice and markedly improves overall sur-
62vival of lethally irradiated mice. Importantly, normal
63tissue protection by RTA 408 is contrasted by inhibition
64of human prostate cancer xenograft growth in mice.

65Materials and Methods
66Materials and cells
67Compoundswere obtained from the following sources:
68Ethyl pyruvate and lithium chloride (Sigma-Aldrich),
69SB216763 and SB416583 (Tocris Bioscience), amifostine
70(Medimmune), and 2-cyano-3,12- dioxooleana-1,9

1Department of Dermatology, Thomas Jefferson University, Philadelphia,
Pennsylvania. 2REATAPharmaceuticals, Irving, Texas. 3Department of Radi-
ation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.

Note: Supplementary data for this article are available at Molecular Cancer
Therapeutics Online (http://mct.aacrjournals.org/).

Corresponding Author: Ulrich Rodeck, Thomas Jefferson University, 233
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73 (11)-dien-28-oic acid (CDDO) derivative RTA 408
74 (REATA Pharmaceuticals). Prostate cancer cells (PC3,
75 LNCaP/C4-2B, DU145, and CWR-22Rv1) were originally
76 obtained from ATCC or from Dr. Thomas Pretlow (Case
77 Western Reserve University, Cleveland, OH) and gener-
78 ously provided by Dr. Marja Nevalainen (Thomas Jeffer-
79 son University, Philadelphia, PA), and immortalized
80 NHPrE-1 and BHPrE-1 prostate epithelial cells were a gift
81 fromDr. SimonHayward (Vanderbilt UniversityMedical
82 Center, Nashville, TN). Normal primary prostate epithe-
83 lial cells (PrEC) were from Lonza. The prostate cancer cell
84 lines were authenticated on a regular basis by monitoring
85 cell morphology, androgen responsiveness, and the
86 expression of cell line–specific markers. Normal primary
87 epidermal keratinocyte cultures were established using
88 standard protocols. Cells were routinely tested for myco-
89 plasma contamination using MycoSensor PCR Assay Kit
90 (Stratagene). Tumor cells were grown in RPMI1640 sup-
91 plemented with 10% FBS (Corning Cellgro). Normal and
92 immortalized prostate epithelial cells and primary kera-
93 tinocytes were grown in specialty media (Lonza). For in
94 vivo imaging, PC3 prostate carcinoma cells were stably
95 transfectedwith reporter plasmids [pGL4.51(luc2/CMV/
96 Neo) and pNL3.2.NF-kB-RE(NlucP/NF-kB-RE/Hygro),
97 Promega] encoding firefly luciferase (FLuc) andNanoLuc
98 luciferase, respectively, and luciferase reporter activity
99 tested using reporter-specific in vitro assays (Promega).

100 Toxicity studies in mice
101 C57Bl/6 mice (6–8 weeks old) were from Charles River
102 Laboratories. Mice were kept in pathogen-free conditions
103 and handled in accordance with the requirements of the
104 Guidelines for Animal Experiments and after approval of
105 the experimental protocols by the Institutional Animal
106 Care and Use Committee of Thomas Jefferson University
107 (Philadelphia, PA). Ionizing radiation (IR) was adminis-
108 tered at doses ranging from 5 to 30 Gy using a 250-kVp
109 X-ray machine (PanTak) with 50-cm source-to-skin dis-
110 tance and a 2-mm copper filter. The dose ratewas approx-
111 imately 1.4 Gy/minute. Drugs were uniformly adminis-
112 tered by intraperitoneal injection for up to 2days before IR
113 treatment, and on days 1, 2, and 3 after IR treatment as
114 indicated. For comparison of RTA 408 and amifostine,
115 mice received one dose (17.5 mg/kg) of RTA 408 24 hours
116 before IR (whole body, 9 Gy), one dose 1 hour before IR,
117 and 2 additional doses 24 and 48 hours after IR; amifostine
118 was injected once (250 mg/kg) 15 minutes before IR. All
119 injections were done intraperitoneally. Animals were
120 euthanized at the end of the observation period, or when
121 weight loss reached or exceeded 20% of the initial weight,
122 or if they showed signs of severe morbidity (lethargy,
123 hunched posture, and/or shivering or severe diarrhea).
124 Kaplan–Meier survival curves were compared by using
125 the log-rank (Mantel–Cox) test.

126 Growth inhibition of prostate cancer xenografts
127 Prostate carcinoma cells were inoculated by subcuta-
128 neous injection (5� 106 permouse) into the lower abdom-

130inal skin of male Foxn1nu (nude) mice (6–8 weeks old;
131Charles River Laboratories). Tumor progression was
132monitored by caliper measurements and by in vivo live
133imaging (see below). Xenograftswere allowed to grow for
1342 to 3 weeks before treatment. RTA 408 (17.5 mg/kg) or
135vehicle control (DMSO)were administered intraperitone-
136ally three times per week until the end of the observation
137periods. To assess effects of the combination of RTA 408
138and IR, radiation (5Gy)was administered atdifferent time
139points as indicated. Tumor volumes were calculated by
140multiplying the two longest planar axes measured by the
141depth of the tumor (as determined by caliper measure-
142ments). Mixed effects regression models were used to
143determine statistical significance of tumor growth data
144over time.

145In situ imaging of xenografts and image analysis
146For FLuc-based in vivo live imaging, mice were injected
147intraperitoneally with 200 mL D-luciferin in PBS
148(15 mg/mL) per 20 g of mouse body weight 15 minutes
149before imaging, and imaged using an IVIS In Vivo Imag-
150ing System (Caliper Life Sciences). For in vivo imaging of
151the NanoLuc luciferase under the control of the NF-kB
152response element, 100 mL of theNanoGlo substrate (10 mg;
153Promega) were injected via tail vein. Image analysis and
154quantitation was done using Living image 4.2 software
155(Caliper LifeSciences). Luciferase-positive areas on indi-
156vidual images were selected as regions of interest (ROI)
157with a 14% threshold. Planar spectral images were auto-
158matically analyzed by the software. Total counts for all
159pixels inside the ROI were recorded. At least 3 animals
160from each experimental group were used for each time
161point.

162Histology, immunohistochemistry, and in situ
163apoptosis detection
164For histologic, immunofluorescent, and direct fluores-
165cent analyses, tissue samples (e.g., small intestines,
166tumors) were embedded in the optimal cutting temper-
167ature compound (Tissue-Tek), and cryosectioned (7 mm).
168Hematoxylin and eosin staining was done on ethanol/
169acetic acid–fixed slides. Apoptosis incidence was deter-
170mined by terminal deoxynucleotidyl transferase dUTP
171nick end labeling (TUNEL) using the In Situ Cell Death
172Detection Kit (Roche Applied Science) and 40,6-diami-
173dino-2-phenylindole (DAPI) counterstain. Quantitative
174analysis was done using ImagePro software (Media
175Cybernetics) on at least 6 different and independent
176microscopic fields for each treatment condition. Indirect
177immunofluorescence was performed by incubation with
178primary antibodies for cleaved PARP (Asp214) Human
179Specific (Cell Signaling Technology), M30CytoDEATH
180(Roche Applied Science), or Ki-67 (Abcam) for 1 hour at
181room temperature or overnight at 4�C followed by sec-
182ondary antibodies labeled with either Alexafluor 488 or
183Alexafluor 594 (BD Biosciences). Sections were counter-
184stained with DAPI and slides were mounted using anti-
185fade Fluorosafe reagent (Calbiochem).
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188 In vitro cell growth and viability assays
189 Cells were seeded in 96-well plates at 15,000 cells per
190 well; after 24 hours, RTA 408 or vehicle were added in
191 triplicate.After72hours, attachedcellswerefixedwith70%
192 ethanol, stained with crystal violet solution (0.2% crystal
193 violet in 2% ethanol), and quantitated bymeasuring absor-
194 bance (ODA595). Metabolic activity was determined after
195 72 hours by addition of WST-1 reagent (Roche; 10 mL per
196 100 mL supernatant) for at least 3 hour at 37oC, followed by
197 measuring absorbance at ODA450 with a reference of
198 ODA650 and using wells containing media without cells
199 for background subtraction. Statistical differences between
200 treatment groups were determined using one-way
201 ANOVAwithTukeyposttest correction (GraphPadPrism).

202 Immunoblot analyses
203 Prostate carcinoma cell lines were treated for 24 hours
204 with RTA 408 or vehicle at the concentrations indicated.
205 Immunoblots were reacted with (i) PARP-1 primary anti-
206 body (C2-10; Santa Cruz Biotechnology) and IRDye
207 800CW goat anti-mouse IgG1-specific secondary anti-
208 body; (ii) cleaved caspase-3 (Asp175; 5A1E) primary anti-
209 body (Cell Signaling Technology) and IRDye 800CW
210 Donkey anti-Rabbit IgG (H þ L) secondary antibody;
211 (iii) cleaved caspase-8 (Asp384; 11G10) primary antibody
212 (Cell Signaling Technology) and IRDye 800CW goat anti-

214mouse IgG1-specific secondary antibody, or (iv)
215M30CytoDEATH primary antibody (Roche Applied Sci-
216ence) and IRDye 800CW Goat anti-mouse IgG2b-specific
217secondary antibody; all secondary antibodies were from
218LICOR. Filters were analyzed on a LICOROdyssey imag-
219ing system.

220Colony formation assays
221Cells were seeded at clonogenic densities in T-25 flasks
222and treated with RTA 408 at various concentrations or
223DMSO, at 24 and 1 hour before radiation exposure. IRwas
224administered at 0, 2, 4, 6, and 8 Gy. All treatments were
225performed in biologic triplicate. After IR, flasks were
226incubated for 2weeks. Colonies were identified by crystal
227violet staining; those containing �50 cells were counted.
228The data were fit to a linear quadratic model for cell
229survival by using GraphPad Prism software and the
230equation Y ¼ exp(�a � x � b � x2) (12). Statistically
231significant differences between drug and control curves
232were determined by using two-way ANOVA.

233Results and Discussion
234Inhibitors of canonicalNF-kBactivationandofGSK3
235improve survival of lethally irradiated mice
236We performed a side-by-side comparison of several
237NF-kB and GSK3 inhibitors on mice challenged with a

Figure 1. Effects of signal transduction modifiers on survival of lethally irradiated mice. A, survival of mice pretreated (24 hours) with the NF-kB inhibitorsQ5 ethyl
pyruvate (EP; 70mg/kg) or RTA 408 (17.5 mg/kg) and receiving 8 Gy single dose whole body radiation. Ethyl pyruvate was administered 15minutes before IR
and on days 1 to 3 after IR. RTA 408 was administered 1 day and 1 hour preirradiation and on days 1 to 3 after IR. B, survival of mice treated with the GSK3
inhibitors LiCl (40 mg/kg), SB415286 (1 mg/kg), and SB216673 (1 mg/kg) and receiving 8 Gy single dose whole body radiation; treatment schedule for
these compounds was 2 and 1 day before IR and daily on days 1 to 3 after IR. C, effects of select combinations of NF-kB and GSK3 inhibitors on survival of
irradiated mice (8 Gy); treatment schedules for individual compounds as described under A. D, survival of irradiatedmice (whole body, 9 Gy) treated with RTA
408 (17.5 mg/kg) at 24 and 1 hour before IR and on days 1 to 2 after IR or with amifostine (250 mg/kg) administered 15 minutes before IR. Experimental
groups in each panel consisted of 5 animals each. P value summaries refer to pairwise comparisons between IR and (IRþ drug) treatment groups, generated
by using the log-rank (Mantel–Cox) test.
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240 lethal whole body radiation dose (8 Gy; Fig. 1). All of
241 the compounds reportedly protect against or mitigate
242 radiation injury in different experimental settings either
243 in vitro or in vivo. They included two inhibitors of canon-
244 ical NF-kB signaling (ethyl pyruvate; ref. 13) and RTA 408
245 (ref. 14; Fig. 1A), and three GSK3 inhibitors, including
246 lithium chloride (LiCl; ref. 8), SB415286 (8), and SB216763
247 (ref. 8; Fig. 1B, c). Ethyl pyruvate interfereswithNF-kBp65
248 signaling by covalently modifying a reactive cysteine
249 residue (Cys36) of the NF-kBp65 subunit (15). RTA 408
250 is a variant of the triterpenoid CDDO that reversibly and
251 covalentlymodifies reactive cysteine residues onmultiple
252 proteins, including several of potential relevance to radi-
253 ation protection. Specifically, binding of CDDO to Cys179
254 in IKKb leads to inhibition of canonical NF-kB signaling
255 (16) and binding to KEAP1 leads to increased levels of the
256 transcription factor Nrf2 and of multiple antioxidant and
257 phase II defense enzymes (17). RTA 408 was included in
258 the screen because we previously observed robust radio-
259 protection of zebrafish embryos by another variant of
260 CDDO (CDDO-TFEA; ref. 6). SB415286 and SB216763 are
261 ATP-competitive GSK3 inhibitors (18), whereas LiCl
262 increases inhibitory phosphorylation of GSK3 (19). To
263 allowdirect side-by-side comparison all drugswere given
264 using a standardized regimen, i.e., for 1 day and 1 hour
265 before radiation and daily for 3 days after. Drug dosages
266 were guided by published results and administrationwas

268by intraperitoneal injection.Weobserved various levels of
269radiation protection with each of the compounds tested.
270The CDDO derivative RTA 408 provided robust and
271consistent levels of radiation protection [100% at 30 days
272post-IR (8 Gy)] either as a single compound (Fig. 1A) or in
273combination with the GSK3 inhibitor SB216763 (Fig. 1C).
274In agreement with an earlier report (13), ethyl pyruvate
275also markedly increased survival of lethally irradiated
276mice (Fig. 1A). Interestingly, the survival advantage pro-
277vided by RTA 408 was compromised when combined
278with SB415286 but not when combined with SB216763
279(Fig. 1C). Similarly, survival of lethally irradiated mice
280treated with a combination of RTA 408 and LiCl was
281slightly lower than survival of mice receiving RTA 408
282alone (Fig. 1C). Finally, RTA 408 produced levels of
283radiation protection similar to amifostine, the only cur-
284rently approved radiation protector (Fig. 1D). These
285results encouraged us to further investigate tissue protec-
286tion provided by RTA 408 alone.

287RTA 408 protects mice against gastrointestinal
288syndrome and death after lethal doses of radiation
289Next, we investigated the effect of RTA 408 on the small
290intestine in C57Bl/6 mice irradiated at a dose (9 Gy) that
291causes death from gastrointestinal syndrome within 10 to
29215 days (20). We observed that RTA 408 preserved the
293integrity of the mucosal lining of the small intestine of

Figure 2. RTA 408 reduces
radiation-associated damage to
the mucosal lining of the small
intestine after single dose (9 Gy)
radiation exposure. RTA 408
(17.5 mg/kg) was administered on
days 1 to 3 after IR. A, assessment
of gastrointestinalmorphologywas
performed on tissue sections
sampled days 2 and 7 after
radiation exposure. Parallel
sectionswere subjected to staining
with Ki-67–reactive antibody to
ascertain the proliferative state of
the gastrointestinal stem cell
compartment located in the crypt
areas; scale bars ¼ 100 mm. B,
effects of RTA 408 on radiation-
induced apoptosis incidence in the
gastrointestinal mucosa. RTA 408
(17.5 mg/kg) was administered
24 hours after IR (9 Gy) and small
intestine tissues sampled at
48 hours. Apoptosis incidence was
determined by TUNEL staining and
cell nuclei were counterstained
with DAPI; scale bars ¼ 100 mm.
Results shown in D represent
mean � SD of at least 6 fields per
condition analyzed. The number of
TUNEL-positive cells was
significantly (Student t test;
P < 0.05) reduced in irradiated
animals receiving RTA 408 when
compared with vehicle-treated,
irradiated animals.
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296 lethally irradiated mice (Fig. 2A). Mice that did not suc-
297 cumb to gastrointestinal syndrome lived beyond 30 days
298 after IR, consistent with radiation protection of multiple
299 organs, including the hemopoietic system. Furthermore,
300 as determined by Ki-67 staining RTA 408-treated mice
301 revealed robust proliferation in the crypt area at 2 and
302 7 days after IR, whereas radiation alone (9 Gy) markedly
303 reduced proliferation in this tissue compartment concur-
304 rent with extensive tissue destruction (Fig. 2A). RTA 408
305 also significantly reduced radiation-induced apoptosis in

307both villi and crypts as determined by TUNEL staining
308(Fig. 2B). This effect extended to the skin, in which RTA
309408 similarly reduced the apoptosis incidence caused by
310radiation exposure (Supplementary Fig. S1).

311RTA 408 inhibits cell growth and survival of human
312prostate cancer in vivo
313To address whether the cytoprotective effects of RTA
314408 extended to tumor cells, we first tested the effects of
315RTA 408 on four different prostate cancer cell lines

Figure 3. RTA 408 inhibits growth
and survival of human prostate
cancer xenotransplants. A, effects
of RTA 408 on growth of DU145,
PC3, LNCaP/C4-2B, and
CWR22Rv1 cells in vivo. RTA 408
was administered (3 times per
week at 17.5 mg/kg) after tumors
had reached volumes exceeding
25 to 30mm3. Experimental groups
consisted of 5 animals each.
Results represent mean � SDQ6 of
these groups. P value summaries
refer to tumor growth trajectories
over time in RTA 408 and control
groups. B, inhibition of PC3
xenograft growth and survival by
combined radiation and RTA 408
treatment. Tumor-bearing mice
were treated for 2weekswith either
RTA 408 or RTA 408 and IR. IR
(5 Gy) was administered twice on
days 1 and 8 and RTA 408
(17.5 mg/kg) was administered
1 day before and for 3 days after
each IR in the combination group.
RTA 408 administration (3 times
weekly) was continued for further
4 weeks. Results represent
mean � SD of groups of 5 animals
each. Tumor growth trajectories
over time were compared between
treatment and control groups, and
among treatment groups. The
insert shows representative
images of tumors in situ at
treatment start and 40 days after.
Chemiluminescence was detected
by IVIS bioimaging of PC3 cells
constitutively expressing FLuc.
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318 representing advanced, androgen-independent tumor
319 stages (LNCaP/C4-2B, CWR22Rv1, DU145, and PC3).We
320 observed robust tumor growth inhibition by RTA 408 of
321 established xenografts (tumor size > 30 mm3 when treat-
322 ment commenced) of all four cell lines tested even in the
323 absence of radiation. Tumor growth, as determined by
324 caliper measurements, is shown in Fig. 3A and represen-
325 tative in vivo tumor images at different days after treat-
326 ment in Supplementary Fig. S2. In marked contrast to the
327 protective effects observed in normal tissues, RTA 408 did
328 not radioprotect PC3 xenotransplants. Rather, when used
329 in combination with radiation, RTA 408 amplified the
330 antitumor effect of radiation alone (P ¼ 0.001; Fig. 3B).
331 In vivo imaging revealed complete tumor growth inhibi-
332 tion in animals that received both radiation and RTA 408
333 at 17.5 mg/kg (Fig. 3B, see insert) but not in mice treated
334 with 5 mg/kg RTA 408 (not shown). RTA 408 induced
335 high levels of intratumoral apoptosis as determined by
336 detection of fragmented DNA (TUNEL), cleaved PARP,
337 and the caspase-3 cleavage product of cytokeratin18
338 (Fig. 4A). The antibodies used to detect cleaved PARP
339 and cytokeratin18 do not crossreact with mouse tissues
340 indicating that RTA 408 induced apoptosis of human
341 tumor cells in situ. RTA 408-dependent inhibition of PC3
342 xenografts was associatedwith significantly reduced pro-
343 liferation as determined by Ki-67 staining (Fig. 4B).

344 RTA 408 decreases growth and survival of human
345 prostate cancer cells in vitro
346 Next, we examined dose-dependent effects of RTA 408
347 on prostate cancer cells in vitro. Within 24 hours of expo-

349sure, RTA 408 (1 mmol/L) induced varying degrees of
350apoptosis in all four prostate cancer cell lines as deter-
351mined by detection of cleaved caspase-3, cytokeratin18,
352and PARP-1 in both attached and, more prominently, in
353cells detached from substrate (Supplementary Fig. S3). In
354contrast, caspase-8 cleavagewas onlymarginally detected
355in DU145 at the higher doses of RTA 408 (0.5–1 mmol/L)
356tested but not the other three cell lines. As determined by
357clonogenic survival assays, RTA 408 radiosensitized all
358four prostate cancer cell lines under investigationwith the
359strongest effects observed in DU145 and LNCaP/C4-2B
360cells (Supplementary Fig. S4).As assessedby crystal violet
361staining and by WST assay, RTA 408 reduced viability of
362all four prostate cancer cell lines in a dose-dependent
363fashion (Fig. 5A). The IC50 for inhibition of in vitro growth
364and survival of these cell lines ranged from 250 to 750
365nmol/L. Interestingly, RTA 408 also inhibited in vitro
366growth and survival of PrEC, the immortalized NHPr-
367E1 and BHPrE-1 prostate cells and, primary human epi-
368dermal keratinocytes (NHEK-1, -2, and -3; Fig. 5B). The
369IC50 asdeterminedbycrystal violet staining for thenormal
370or premalignant cells was in the range of 125 to 250 nmol/
371L. Compromised cell viability was associated with sub-
372strate detachment of normal prostate epithelial cells and
373keratinocytes, aswell as control PC3 cells (Supplementary
374Fig. S5). Collectively, these results highlight a broad spec-
375trum of inhibitory effects of RTA 408 on benign and
376malignant prostate cells and on normal prostate epithelial
377cells and keratinocytes in vitro. The effects on normal
378epithelial cells in vitro are in marked contrast to tissue
379protection of normal epithelial tissues in irradiated mice.

Figure 4. Effects of RTA 408 on apoptosis incidence and proliferation in PC3 prostate cancer xenografts treated with RTA 408. A, apoptosis incidence was
determined by TUNEL and by immunohistochemical detection of cleaved PARP and cytokeratin 18 (M30) at different time intervals after treatment with RTA
408 commenced; scale bars¼100mm.Quantitative analysis of the results obtainedonday 15of treatmentwasperformedby averaging the number of positive
cells in at least 6 different fields. Results are expressed asmean�SD. Statistically significant (P < 0.05) differences were determined by Student t test. B, RTA
408-dependent inhibition of PC3 prostate cancer cell proliferation. Proliferating cells were detected by staining with Ki-67 antibody (red). Cell nuclei were
counterstained with DAPI; scale bars ¼ 100 mm. Tumors were harvested 15 days after treatment initiation.

Alexeev et al.

Mol Cancer Ther; 2014 Molecular Cancer Therapeutics6

axl117
Inserted Text
cells



382 Inhibition of NF-kB activity by RTA 408 in vivo
383 The selective antitumor activity of RTA 408 on prostate
384 cancer cell lines in vivo raises the question which molec-
385 ular target(s) are responsible for this effect. In prostate
386 cancer, deregulated NF-kB signaling is associated with
387 disease progression, contributes to expression of both
388 prostate specific antigen (PSA; 21) and androgen receptor
389 (22), and is prevalent in castrate-resistant and metastatic
390 tumors (23–26). Conversely, disrupting NF-kB signaling
391 by forced expression of a phosphorylation-deficient IkB
392 radiosensitizes PC3 prostate cells in vitro (27). Other
393 NF-kB inhibitors, including curcumin (28), parthenolide
394 (29), and SN52 (30), similarly inhibit prostate cancer
395 growth and survival. On the basis of this prior work, we
396 used NF-kB-NLuc- and control CMV-Fluc -reporter con-
397 structs to measure NF-kB activity in transfected PC3
398 tumors in vivo, before and after treatment with RTA 408
399 and/or IR (Fig. 6A and B). As expected, radiation induced
400 NF-kB activity in tumor tissue (Fig. 6, panel 4). In the
401 posttreatment group, the ratio of NF-kB-NLuc- to CMV-
402 Fluc activity in RTA 408-treated mice (Fig. 6, panel 6) was
403 significantly lower compared with that observed in mice
404 treatedwith vehicle alone (Fig. 6, panel 2). In addition, the

406ratio ofNF-kB-NLuc- toCMV-Fluc activity inmice treated
407with RTA 408 and IR combined (Fig. 6, panel 8) was
408significantly lower compared with that observed in mice
409treated with IR alone (Fig. 6, panel 4). Hence, at tumor
410growth–inhibitory concentrations, RTA 408 effectively
411inhibited transcription of an NF-kB–responsive reporter
412construct in PC3 cells in vivo.
413These observations extend and confirm previous
414reports describing in vitro growth inhibition of human
415prostate cancer cells byCDDOvariants. Specifically, Deeb
416and colleagues described proapoptotic effects of CDDO,
417CDDO-methyl(ME), and CDDO-imidazole(IM) in cul-
418tured human LNCaP, PC3, and DU145 and murine
419TRAMPC-1 prostate cancer cells in vitro (31, 32). Further-
420more, Gao and colleagues described CDDO-dependent
421chemoprevention of prostate cancer development in
422transgenic TRAMP mice in which the SV40 T antigen is
423expressed by prostate epithelial cells (33). Tumor growth
424inhibition by CDDO derivatives extends to other tumor
425types ranging from leukemias (34–37) to solid malignan-
426cies (38–42). A commondenominator of these tumor types
427is deregulated NF-kB activity, which is effectively inhib-
428ited byRTA408 not only in vitro but also in vivo. It remains

Figure 5. In vitro effects of RTA 408 on prostate cancer cell (A) and normal cell growth and survival (B). Loss of viability was determined by assessing the
numbers of adherent cells using crystal violet stain or measuring metabolic activity (WST assay). Experiments were performed in triplicate and repeated two
times. Results shown are mean� SD of triplicates of a representative experiment. Results are presented as percentages of vehicle control. Analysis by using
one-way ANOVAwith Tukey posttest correction (GraphPad Prism) revealed significant differences between RTA 408- and vehicle-treated groups (P < 0.05 to
P < 0.001).
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431 to be determinedwhether inhibition of survival pathways
432 beyondNF-kBplays a role in prostate cancer inhibition by
433 RTA 408. For example, the Akt/mTOR pathway is also
434 reportedly inhibited by CDDO-ME in prostate cancer
435 cells (43).
436 The mechanistic basis for the dual and opposite effects
437 of RTA 408 on normal and a broad range of malignant
438 tissues remains to be investigated further. Of particular
439 relevance to cytoprotection, CDDO covalently attaches to
440 KEAP1, disrupts KEAP1/Nrf2 interaction, and triggers
441 Nrf2-dependent transcription of a host of genes encoding
442 antioxidant enzymes (16). Nrf-2 activation by the CDDO

444derivatives CDDO-ethylamide (EA) and CDDO-ME has
445been proposed to improve survival of irradiated mice
446(44). We observed that topical application of RTA 408
447markedly reduced radiation dermatitis in mice associ-
448ated with significant increases in Nrf2 target genes and
449significant decreases in NF-kB target genes (45). Inter-
450estingly, radiation protection of normal prostate epithe-
451lial cells contrasted by growth inhibition of prostate
452cancer cells in vivo has been very recently described for
453dimethylamineparthenolide (DMAPT; ref. 46) Q7. DMAPT
454and its parent compound parthenolide alkylate–reactive
455cysteines on multiple protein targets, including KEAP1,
456inhibit canonical NF-kB signaling by interacting with
457IkB and theNFkBp65 subunit (47–49). In contrast to RTA
458408, parthenolide or DMAPT reportedly did not inhibit
459cultured normal or immortalized prostate cells to the
460same extent as their malignant counterparts and this
461difference has been attributed to differential effects of
462DMAPT on KEAP1-dependent oxidation status in nor-
463mal and malignant cells (46). This difference between
464RTA 408 and DMAPT suggests that tissue protection by
465RTA 408 as seen in vivo is not primarily due to cell-
466autonomous effects but likely depends on environmen-
467tal factors provided by the tissue context in vivo. A
468precedent for "contextual" antitumor effects of CDDO-
469ME has been established previously (50). Specifically,
470CDDO-ME inhibited myeloid-derived suppressor
471cells in the tumor microenvironment associated with
472improved immune responses. Regardless of the relative
473contribution of cell-intrinsic or "environmental" antitu-
474mor mechanisms, the results obtained for DMAPT (46)
475andRTA408 (this study) validate the concept of selective
476radiosensitization of tumor cell tissues by thiol-reactive
477compounds (5).
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Figure 6. In vivo imaging of NF-kB reporter activity in PC3 xenografts
treated with either IR, or RTA 408, or a combination of IR and RTA 408. A,
representative images of mice showing expression of FLuc under control
of a CMVpromoter and corresponding images showing activity of an NF-
kB–responsive promoter driving NanoLuc (NLuc) expression are shown.
Pretreatment images were acquired 2 days before treatment with either
RTA 408 or IR (panels 1, 3, 5, and 7). Posttreatment imageswere acquired
from the samemice either untreated or after short-term (1 hour) treatment
with RTA 408 (17.5 mg/kg) or after IR (5 Gy) or RTA 408 (17.5 mg/mL; 2
days) and IR (5 Gy) as indicated (panels 2, 4, 6, 8). Images in the
posttreatment group were acquired 1 hour after IR exposure. B,
quantitative representation of NF-kB activity expressed as the ratio of
NanoLuc to firefly luciferase (n¼ 2/group). Labeling of the x-axis refers to
treatment groups as shown in A. Results shown are mean � SD of
duplicate mice in each group. This experiment was repeated with
comparable results.
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Abstract 

 Bone marrow suppression due to ionizing radiation is a significant clinical problem in radiation therapy and 

following non-medical radiation exposure. Currently, no small molecule agents that can enhance hematopoietic 

regeneration following radiation exposure are available.  Here, we report the effective mitigation of acute 

hematopoietic radiation syndrome in mice by the synthetic triterpenoid, RTA 408.   The administration of a brief 

course of RTA 408 treatment beginning 24 h after bone marrow lethal doses of radiation significantly increased 

overall survival. Importantly, treatment with RTA 408 led to the full recovery of steady state hematopoiesis with 

normalization of the frequency of hematopoietic stem and progenitor cells.  Moreover, hematopoietic stem cells 

from RTA 408-mitigated mice showed lineage-balanced, long-term, multilineage potential in serial 

transplantation assays, indicative of their normal self-renewal activity.  The potency of RTA 408 in mitigating 

radiation-induced bone marrow suppression makes it an attractive candidate for potential clinical use in 

treating both therapy-related and unanticipated radiation exposure.  
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Introduction 

Tissue damage due to intentional or accidental radiation exposure is a pervasive threat.  Dispersal of 

radioactive materials leading to whole body exposure may occur as a consequence of nuclear reactor incidents 

(e.g. Fukushima) or following detonation of explosive devices laced with radioactive materials (e.g. ‘dirty 

bomb’).  One of the most highly proliferative tissues in the body, the hematopoietic system, is also the most 

sensitive to the effects of ionizing radiation. At relatively low doses of exposure, radiation-induced damage to 

hematopoietic cells can cause bone marrow failure, leading to anemia, infection and hemorrhage [1,2]. Even 

exposure to non-lethal doses of radiation causes significant injury to hematopoietic stem cells (HSCs), and 

causes their depletion, increased differentiation and impaired self-renewal activity [3].  To be useful in the 

setting of unanticipated radiation exposure, therapeutic agents must effectively mitigate radiation damage 

when administered after the exposure has occurred. To date, no small molecule pharmacological drugs are 

approved to treat radiation-induced hematopoietic syndrome either in the radioprotection or mitigation setting 

[4].  

 
Triterpenoids bind to specific cysteine residues on target proteins [5] and elicit both cytoprotective [6] 

and anti-inflammatory activities [7,8]. While it is unresolved which molecular targets of triterpenoids impart 

cytoprotection, these compounds induce antioxidant enzymes in an Nrf2-dependent fashion [9,10] and inhibit 

canonical NF-κB signaling [11].  Earlier work demonstrated that triterpenoids protect zebrafish embryos against 

the lethal effects of ionizing radiation [12].  More recently, a triterpenoid (CDDO-Me) administered 24 hours 

after radiation exposure was shown to improve the survival of mice exposed to lethal, myelosuppressive doses 

of total body radiation (TBI) [13].  Although CDDO-Me advanced to phase III clinical trials to treat diabetes-

associated chronic kidney disease, further development of this compound was stopped due to adverse events 

related to fluid overload in a subset of these  renal failure patients [14].   

In this report, we focus on the mitigation of the hematopoietic acute radiation syndrome by a 

triterpenoid (RTA 408) that is currently in clinical development for oncological applications.  Recent work 

demonstrated that RTA 408 protects the skin [15] and gastrointestinal mucosa (Alexeev et al., in revision) of 

mice against radiation damage.  These findings encouraged us to investigate whether RTA 408 also can 
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increase hematopoietic recovery from radiation damage, and can be used in the mitigation setting, i.e. when 

administered 24 h after radiation exposure.  We observed that RTA 408 was a highly effective mitigator of 

hematopoietic syndrome in mice as demonstrated by effective recovery of hematopoiesis after administration 

of lethal, myeloablative doses of whole body radiation.  In addition, treatment with RTA 408 restored normal 

hematopoietic stem and progenitor cell frequency and HSC-self renewal activity.  
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Materials and Methods 

 

Radiation exposure and mitigator treatment  

RTA 408 was provided by REATA Pharmaceuticals, Inc. and DMSO stock solutions prepared within 1 h before 

injection.  RTA 408 (17.5 mg/kg) or vehicle control (DMSO) were administered intraperitoneally (i.p.) at 24, 48 

and 72 h after irradiation.  Whole body ionizing radiation (IR) was administered at doses ranging from 7 to 8 Gy 

using a 250-kVp X-ray machine (PanTak, East Haven, CT) with 50-cm source-to-skin distance and a 2-mm 

copper filter.  The dose rate was approximately 1.4 Gy/min.    

Mice 

For initial irradiation experiments, C57Bl/6 mice (6-8 weeks old) were used. For transplantation studies, 8-12 

week old C57Bl/6 CD45.1 or C57Bl/6 CD45.1/CD45.2 hybrid host mice were used as recipients and as carrier 

cell donors. Mice were kept in pathogen-free conditions and handled in accordance with the requirements of 

the Guideline for Animal Experiments and after approval of the experimental protocols by the Institutional 

Animal Care and Use Committees of Thomas Jefferson University and OHSU.  

Complete blood counts and bone marrow analysis 

Peripheral blood was collected into tubes containing EDTA tripotassium salt and assayed using a Hemavet 

950 FS hematology analyzer. Dissected femurs were flushed with Hank’s Balanced Salt Solution containing 

10mM HEPES and 3% fetal bovine serum and passed through a 70 micron cell strainer.  Nucleated cell counts 

were obtained using Turk’s solution and a hemocytometer. 

Colony forming unit (CFU) assays  

Bone marrow cells (2x104) were plated in duplicate or triplicate in 35mm dishes in mouse methylcellulose 

complete medium (HSC007, R&D systems). Colonies were scored 7-10 days after plating following the 

manufacturer’s instructions.  

Transplantation studies 
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Prior to transplant, all recipient mice were maintained for at least one week on acidified water. Recipient mice 

received 7.5 Gy in a single fraction using an RS2000 Xray irradiator (Rad Source, Alpharetta, Georgia) with a 

dose rate of  ~1.36 Gy/min.  Primary cell recipients received 2x106 donor cells together with 1x105 carrier bone 

marrow. For serial transplantation experiments, secondary recipient mice received 2x106 unfractionated bone 

marrow isolated from primary recipients. Immediately following irradiation, cells were transplanted into 

anesthetized animals via retroorbital injection. Recipient mice were maintained on water containing antibiotics 

for 4 weeks following transplant, as previously described [16].  

Flow cytometry 

Red-cell depleted peripheral blood was prepared as previously described [17]. Live cells were stained with 

antibodies, washed and then analyzed using a Canto or LSR II (BD). Dead cells were excluded with propidium 

iodine and doublets were excluded using FSC-A, FSC-H and trigger pulse width parameters. Data were 

analyzed with FlowJo software (Tree Star, Inc, Philomath, OR, USA). Antibodies (and clones) used in this 

study include: Mac1 (M1/70), Gr1 (RB6-8C5), B220 (RA3-6B2), CD3 (145-2C11), and c-kit (2B8) from 

eBioscience (San Diego, CA, USA); CD4 (H29.19), CD5 (53-7.3), CD8 (53.6.7) from BD Pharmingen; TER119, 

Sca1 (D7), CD150 (TC15-12F12.2), from Biolegend (San Diego, CA, USA). For LSK cell analysis, the lineage 

panel included B220, CD3, CD4, CD5, CD8, Mac1, Gr1 and Ter119. 
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Results  

RTA 408 enhances the survival of lethally irradiated mice  

To determine whether RTA 408 is an effective mitigator of hematopoietic acute radiation syndrome 

following bone marrow-lethal doses of total body irradiation (TBI), mice were administered 3 daily injections of 

17.5 mg/kg RTA 408 beginning 24 hours following TBI  (Figure 1 A). Remarkably, treatment with RTA 408 

resulted in the 35 day survival of 100% of 7Gy (LD40/35) TBI mice (Figure 1B, P<0.05) and 60% of 7.5 Gy 

(LD100/13) TBI mice (Figure 1C, P<0.0001). Although 40% of mice exposed to 8 Gy (LD100/10) TBI survived 

following RTA 408 treatment, these results did not reach statistical significance (Figure 1D).  

Full hematologic recovery in irradiated mice treated with RTA 408.  

To begin to assess the recovery of hematopoiesis, complete blood counts (CBCs) were obtained at 2 

weeks and again at 11 weeks following RTA 408 treatment. As anticipated, both neutrophils and lymphocytes 

were markedly reduced at 2 weeks; however, the hemoglobin remained above 8 g/dL, a level consistent with 

survival from a bone marrow lethal dose of radiation.  By 11 weeks after radiation exposure, most parameters 

had returned to normal in the RTA 408 treated mice (Figure 2A).  Circulating neutrophils were increased in 

RTA 408-treated mice relative to non-irradiated age matched control mice. This result was not surprising as the 

percentage of neutrophils in the blood is typically increased in mice following either bone marrow or 

hematopoietic stem cell transplant. This myeloid bias may be further amplified as the triterpenoid derivative 

CDDO-Me is known to promote myelopoiesis in mice [18].  In LD(50/30)-LD(70/30) TBI mice that survive radiation 

injury without any intervention, BM cellularity typically remains  significantly decreased throughout life [19]. 

However, when we assessed BM in RTA 408-treated 7.5 Gy TBI mice 14 weeks after radiation exposure, BM 

cellularity was not reduced in the TBI+RTA 408 mice (Figure 2B). Together, these findings of the complete 

restoration of circulating hematopoietic cells and normal BM cellularity in 7.5 Gy TBI mice indicate that RTA 

408 is a potent mitigator of hematopoietic syndrome.  
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RTA 408 restores normal hematopoietic stem and progenitor cell frequency in lethally irradiated mice 

Acute radiation exposure causes long-term damage to both hematopoietic stem and progenitor cells, 

resulting in their decreased frequency and a substantive loss of functional activity [3,19-21]. To more fully 

assess the efficacy of RTA 408 in restoring hematopoietic stem and progenitor cell frequency following lethal 

irradiation, BM from RTA 408-treated mice was analyzed 14 weeks following 7.5 Gy TBI (Figure 1A).  BM from 

age-matched, non-irradiated mice was used for comparison as none of the vehicle-treated 7.5 Gy TBI mice 

survived (Figure 1C). Flow cytometric analysis (Figure 3A) revealed that mice exposed to TBI and treated with 

RTA 408 had comparable frequencies of phenotypic progenitor cells including Linage-(Lin-) ckit+ cells and Lin-

Sca1-c-kit+ (LSnegK) myeloerythroid committed progenitors. Similarly, a normal frequency of Lin-Sca1+c-kit+ 

(LSK) cells, a subpopulation highly enriched for hematopoietic stem cells and multipotent progenitor cells, was 

observed in RTA 408-mitigated mice (Figure 3B). Hematopoietic progenitor cell function in RTA 408-mitigated 

7.5 Gy TBI mice was further assessed by measuring BM colony forming unit (CFU) activity on a per cell basis 

in cytokine- supplemented methylcellulose.  Both the total frequency and the individual subsets of 

myeloerythroid colonies formed by RTA 408-mitigated BM were indistinguishable from those formed by non-

TBI control BM (Figure 3C), indicating no loss of progenitor activity in the RTA 408-mitigated BM. Together, 

these data demonstrate that RTA 408 treatment of 7.5 Gy mice exposed to TBI restored both phenotypic and 

functional hematopoietic progenitors to normal levels. 

To assess phenotypic HSCs in RTA 408-mitigated 7.5 Gy TBI mice, the frequency of CD150+LSK cells, 

a population that is  highly enriched for functional stem cells [22], was determined by flow cytometry.   Both the 

absolute number and frequency of CD150+LSK cells in RTA 408 treated TBI mice was the same as that in non-

TBI controls (Figure 3D). It has previously been shown that radiation injury  causes a long-term  phenotypic 

skewing of hematopoietic stem cells, reflected by a higher proportion of CD150+ cells within the LSK cell 

subset [19,21]. However, the proportion of CD150+ cells in the LSK cell population of RTA 408-mitigated TBI 

mice was the same as that observed in age-matched non-TBI mice (Figure 3E). Thus, RTA 408 treatment 24 

hours post-TBI both effectively mitigates the radiation-induced loss of phenotypic HSCs.  
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RTA 408 restores functional HSCs in lethally irradiated mice. 

Transplantation assays were performed to assess the long-term functional status of HSCs in RTA 408-

rescued mice. For these experiments, BM from individual RTA 408 treated mice has harvested 3.5 months 

post TBI was co-transplanted with a limiting dose of carrier BM into CD45 congenic, lethally irradiated 

recipients (Figure 4A).   Donor cell engraftment was monitored in the peripheral blood over time.  Radiation 

exposure not only limits HSC self-renewal, it also causes their long-term myeloid lineage skewing [3,19]. As 

shown in Figure 4B, BM from RTA 408 rescued donors was able to establish robust hematopoietic engraftment 

in primary hosts. Moreover, RTA 408 treated BM sustained long-term, multilineage hematopoiesis for 6 months 

post-transplant (Figure 4C), consistent with the presence of functional HSCs lacking lineage bias.  Phenotypic 

HSCs (CD150+LSK) derived from  RTA 408  donors cells were  assessed in primary recipient mice BM >6 

months post-transplant. For comparison, non-TBI donor cell contribution to BM HSCs in primary recipients was 

evaluated. Importantly, the frequency of CD150+LSK cells derived from RTA 408-mitigated donor cells was the 

same as that derived from non-TBI donor cells (Figure 4D-E). In addition, RTA 408-mitigated BM had the same 

proportion of CD150+ cells within the LSK subset as BM from non-TBI donors, providing further evidence of 

sustained HSC lineage balance in RTA 408-mitigated BM.   

To stringently test functional HSC activity, serial transplantation was performed (Figure 4F). RTA 408 

treated BM gave rise to multilineage, donor cell engraftment in all secondary recipients providing direct 

evidence for HSC self-renewal activity (Figure 4F-G). Consistent with our finding that phenotypic HSC in RTA 

408-mitigated BM lack a myeloid-bias, we found a similar overall contribution of control donor cells and RTA 

408 donor cells to the total number of circulating myeloid cells (Figure 4G). These data confirm that RTA 408 

supports the regeneration of bona fide, functionally competent, lineage-balanced, long-term HSC following 

exposure to bone marrow-lethal doses of radiation.  

 

Discussion 



  10 
 

The results of  our studies  are consistent with a previous report demonstrating the CDDO variant 

CDDO-Me, beginning 24 hours after exposure to 7.5 Gy TBI,  enhances  hematologic recovery and  results in 

20% survival  [13].  Here, we show that the triterpenoid RTA 408 can prevent death caused by hematopoietic 

acute radiation syndrome in 60% of mice that received 7.5 Gy TBI. Moreover, the administration of just three 

doses of RTA 408 beginning 24 hours post radiation exposure was sufficient to restore hematopoietic stem 

and progenitor cell frequency and function to levels seen in non-irradiated mice.  The combined results from 

these studies strongly suggest that RTA 408 and other related triterpenoids are promising candidates that 

should be evaluated further for the pharmacological treatment of hematopoietic acute radiation syndrome in 

additional pre-clinical studies.  

 

The mechanism(s) underlying the regenerative effect that RTA 408 on radiation-damaged 

hematopoietic cells are obscured by the multiplicity of molecular targets of thiol modifying compounds.  

Relevant targets include JAK/STAT3 [23] and canonical NF-kB signaling pathways [11] both of which are 

reportedly inhibited by triterpenoids.  In addition, triterpenoids induce Nrf2-dependent transcription of a plethora 

of antioxidant enzymes by disrupting the interaction of Nrf2 with its inhibitor Keap1, thereby preventing the 

proteolytic degradation of Nrf2 and facilitating its nuclear translocation [9,10,24]. Nfr2 has radioprotective 

activity in the hematopoietic system [13], lending support to the hypothesis that induction of antioxidant 

enzymes is critical for the bone marrow-protective effects of triterpenoids, including RTA 408.  However, it is 

also likely that triterpenoids are activating additional signaling pathways that also make a significant 

contribution to the regenerative process. For example, CDDO derivatives have been shown to skew the 

differentiation of myelomonocytic cells in an Erk1/2 and SMAD-dependent manner [25]. Furthermore, CDDO 

induces granulocytic differentiation of HL-60 cells presumably through induction of CCAAT enhancer-binding 

protein alpha (CEBPA), a transcription factor critical for granulocytic differentiation [26,27].    The marked 

increase in circulating neutrophils in RTA 408-mitigated mice (Fig. 2) is consistent with these previous findings.   

These results suggest that the complex effects of synthetic triterpenoids on multiple signaling pathways 

regulate hematopoietic cell survival and differentiation.  
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Figure Legends 

Figure 1. Mice treated with RTA 408 24 hours post TBI survive lethal BM-lethal doses of radiation. 

(A) Experimental schema. Mice exposed to 7-8 Gy TBI were injected i.p. with 17.5 mg/kg RTA 408 per day 

beginning 24 hours post TBI. Mice were monitored for survival through day 35. Complete blood counts (CBC) 

and bone marrow analysis was performed at the indicated time points. (B-D) Survival of TBI mice following 

RTA 408 or vehicle only treatment. In (B), N=5 mice per treatment group and for (C-D), N=10 mice per 

treatment group. Statistically significant differences between survival distributions were determined by log-rank 

test. (*P<0.05; ****P<0.0001; ns: not significant).  

 

Figure 2. Hematological recovery in RTA 408 treated 7.5 Gy TBI mice.  

(A) Circulating blood cell (CBC) analysis in RTA 408 treated 7.5 Gy TBI mice 2 weeks and 11 weeks post TBI. 

Pooled results from n=7-8 mice are shown. CBCs from control, non-TBI mice (n=6) are also shown. WBC: 

white blood cells; RBC: red blood cells. Although platelets are significantly higher in RTA 408-treated mice, 

they are still within normal range. (B) Nucleated bone marrow cell counts in 7.5 Gy TBI mice treated with RTA 

408 (n=8) 14 weeks post TBI and age matched, non-TBI controls (n=5).  A Student’s t-test was used for 

statistical analysis and * indicates P<0.05.  For all graphs, error bars indicate S.E.M. 

 

Figure 3. Restoration of hematopoietic stem and progenitor cell frequency in RTA 408-mitigated 7.5 Gy 

TBI mice to non-TBI levels. 

(A) Representative flow cytometry analysis of 7.5Gy TBI + RTA 408 mice and age-matched control BM, 14 

weeks post TBI. Parental populations are indicated on the top of each plot and gates used for analysis are 

shown. (B) Calculated frequency of hematopoietic progenitor populations based on flow cytometry analysis. No 

significant differences between control non-TBI (n=5) and 7.5 Gy TBI +RTA 408 (n=8)  mice were observed.  

(C) Comparison of in vitro colony forming unit activity in methylcellulose supplemented with IL3, IL6, TPO and 

SCF. Total colonies per input BM and types of colonies formed were not different between RTA 408-mitigated 
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BM (n=6) and age-matched non-TBI BM (n=5). BFU-E: burst forming unit erythroid; GEMM: mixed lineage 

granulocytic, erythroid, macrophage, megakaryocyte; G/M/GM: myeloid colonies containing granulocytes (G), 

macrophages (M) or both cell types (GM). (D) CD150+LSK cell frequency in RTA 408-mitigated TBI mice (n=8) 

is the same as in non-TBI, age-matched mice (n=5). (E) Similar CD150+ cell frequency in the LSK 

compartments of RTA 408-mitigated BM and non-TBI BM. Unpaired student’s t-tests were used for statistical 

analysis. Error bars indicate SEM. 

 

Figure 4. Treatment with RTA 408 restores functional HSC in 7.5 Gy TBI mice. 

(A) Primary transplant schema. Donor cells from 4 individual 7.5 Gy  donor TBI + RTA 408 mice were 

transplanted into 4 cohorts of 2-3 recipient mice.   Flow cytometry analysis was used to evaluate blood 

lineages and distinguish donor, host and competitor cells.  B) Contribution of 7.5 Gy TBI + RTA 408 donor BM 

cells to peripheral blood leukocytes following transplant over time. Pooled results from 10-11 recipient mice are 

shown. C) Lineage analysis of circulating donor cells derived from TBI + RTA 408 BM 6 months following 

transplant. Donor cells from TBI + RTA 408 BM contributed to both myeloid (Mac1+ and/or Gr1+) and lymphoid 

(B220+ B-cells, CD3+ T-cells) lineages. Pooled results from 10-11 recipient mice are shown. (D-F) Donor cell 

analysis in BM >6 months following transplantation. Recipient mice (n=3) transplanted with TBI + RTA 408 BM 

from 3 different donors were analyzed. A separate cohort of mice (n=3) that received BM from 2 non-TBI 

donors was used for controls.  (D) Similar levels of BM donor cell engraftment by non-TBI donor cells and 7.5 

Gy TBI+ RTA 408 donor cells. (E) Similar contribution to CD150+LSK cells by non-TBI donor cells and 7.5 Gy 

TBI+ RTA 408 donor cells. (F) The same proportion of CD150+ cells in the LSK compartment were derived 

from non-TBI donor cells or TBI+ RTA 408 donor cells. (G) Secondary transplant schema. BM from two 

primary recipient mice reconstituted with non-TBI or 7.5Gy TBI + RTA 408 donor cells were serially 

transplanted into cohorts of 4-5 secondary recipients. (H) Peripheral blood analysis of secondary recipient mice 

16 weeks post-transplant.   
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